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Design of a bioactive cell-penetrating
peptide: when a transduction domain
does more than transduce‡

Brian Ward,a Brandon L. Seal,a Colleen M. Brophyb and Alyssa Panitcha∗

The discovery of cell-penetrating peptides (CPPs) has facilitated delivery of peptides into cells to affect cellular behavior.
Previously, we were successful at developing a phosphopeptide mimetic of the small heat shock-like protein HSP20 . Building
on this success we developed a cell-permeant peptide inhibitor of mitogen-activated protein kinase-activated protein kinase 2
(MK2). It is well documented that inhibition of MK2 may be beneficial for a myriad of human diseases including those involving
inflammation and fibrosis. During the optimization of the activity and specificity of the MK2 inhibitor (MK2i) we closely
examined the effect of cell-penetrating peptide identity. Surprisingly, the identity of the CPP dictated kinase specificity and
functional activity to an extent that rivaled that of the therapeutic peptide. The results reported herein have wide implications
for delivering therapeutics with CPPs and indicate that judicious choice of CPP is crucial to the ultimate therapeutic success.
Published in 2009 by John Wiley & Sons, Ltd.

Supporting information may be found in the online version of this article
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Introduction

Over the past 20 plus years since the simultaneous discovery by
Frankel and Pabo [1] and by Green and Loewenstein [2] that the TAT
protein from the HIV virus could be taken up by cells, a tremendous
body of work investigating the mechanism and limitations of the
uptake has been generated [3–6]. In addition, several investigators
have identified new sequences that act as CPPs [7–10] (commonly
used CPPs also listed in Ref. 11). The mechanism of entry into
the cell by these cell-permeating peptides is still an active topic
of investigation [11–13]. Less widely investigated is the effect of
the identity or primary structure of the CPP on the activity of the
molecule to which it is attached.

MAPKAP-K2 (MK2), controls gene expression at both the tran-
scriptional and post-transcriptional levels as well as cytoskeletal
architecture [14]. Two MAP kinases, p38α, and p38β , activate MK2
[15]. Environmental stresses including heat shock, hypoosmolar-
ity, and hypoxia and inflammatory cytokines, such as TGF-β1, IL-1,
TNF-α, IL-6, and GM-CSF, activate the p38/MK2 pathway [16–23].
When activated, MK2 increases the translation and stability of
cytokine mRNA and causes actin reorganization [16,24,25].

Inhibiting MK2 may be beneficial for a myriad of human diseases
including endotoxic shock [26], pancreatitis [27], asthma [28],
localized inflammatory disease [28], atherosclerotic cardiovascular
disease [29], Alzheimer’s disease [30,31], cancer [32], neural
ischemia [31], rheumatoid arthritis [33], and inflammatory bowel
disease [34]. Thus, an MK2 inhibitor may have an enormous impact
on treating human disease. While several small molecule inhibitors
of MK2 are under development, none has yet been approved by
the United States FDA [35].

We previously reported on an MK2 inhibitor peptide, WLR-
RIKAWLRRIKALNRQLGVAA, [36] that was derived from the se-
quence published by Hayess and Benndorf [37]. However, the

initial work with this peptide, while demonstrating functional ac-
tivity, also demonstrated poor cell viability in vitro. This observation
led us to explore the potential origin of toxicity.

Work by Lukas et al. suggests that highly basic peptides
can serve as inhibitors of MLCK [38]. This information coupled
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with the apparent toxicity of the highly basic WLRRIKAWLR-
RIKALNRQLGVAA led us to hypothesize that basic CPPs may
lead to nonspecific kinase inhibition. To further investigate the
impact of CPP on activity, alternate CPPs were examined. Two
of these CPPs were based on HIV’s TAT protein – YGRKKRRQRRR
and YARAAARQARA [39–42]. The original CPP, WLRRIKAWLR-
RIKA, was also tested along with its non-functional monomer,
WLRRIKA. Two additional, novel CPPs were introduced during
this work, KAFAKLAARLYR and FAKLAARLYR. These two CPPs are
based on the antithrombin III heparin-binding domain [43,44].
We have shown that all of the CPPs tested in these studies
enter cells (data not shown). Kinase inhibition was evaluated us-
ing radiometric assays to better identify how modifications to
the CPP influenced MK2 inhibition and to better determine the
specificity of complete (CPP and therapeutic domain coupled)
peptides.

These studies suggest that care must be taken in choosing CPPs
for the delivery of bioactive molecules into cells. The sequence of
the CPP can influence the kinase inhibition activity and specificity.
In addition, progress has been made toward designing a peptide-
based inhibitor with improved potency and specificity for MK2.
Future studies will address the biological activity of our novel MK2
inhibitor peptides in cell culture and in vivo.

Experimental

Peptide Synthesis and Purification

Peptides were synthesized on Rink-amide or Knorr-amide resin
(Synbiosci Corp., Livermore, CA) using standard FMOC chemistry
[45] on a Symphony Peptide Synthesizer (Protein Technologies
Inc., Tucson, AZ). The coupling reagent for the amino acids (Syn-
biosci Corp.) was HBTU/NMM (Anaspec - Freemont, CA; Sigma -
St. Louis, MO). Following synthesis, the peptide was cleaved from
the resin with a trifluoroacetic acid-based cocktail, precipitated
in ether, and recovered by centrifugation. The recovered peptide
was dried in vacuo, resuspended in MilliQ purified water, and puri-
fied using an FPLC (ÄKTA Explorer, GE Healthcare, Piscataway, NJ)
equipped with a 22/250 C18 prep-scale column (Grace Davidson,
Columbia, MD). An acetonitrile gradient with a constant concentra-
tion of either 0.1% trifluoroacetic acid or 0.1% acetic acid was used
to achieve purification. Desired molecular weight was confirmed
by time-of-flight MALDI mass spectrometry using a 4800 Plus
MALDI TOF/TOFTMAnalyzer (Applied Biosystems, Foster City, CA).

Fluorescence-Based Kinase Activity Assay

The Omnia Kinase Assay for MAPKAP-K2 kit (Invitrogen, Carlsbad,
CA) was used to determine the reaction velocity for MK2 in
the presence and absence of each of the peptides listed in
Table 1. The kit contains a proprietary reaction buffer to which the
following were added (final concentrations are given): 1 mM ATP,
0.2 mM DTT, 10 µM MAPKAP-K2 Sox-modified peptide substrate,
5 ng MK2, and the peptide inhibitor of interest (final volume of
50 µl). Human MK2 was purchased from Millipore. The reactions
were performed at 30 ◦C in the wells of a low-protein-binding
96-well plate provided with the kit, and fluorescence readings
(excitation = 360 nm, emission = 485 nm) were taken every 30 s
for 20 min using a SpectraMax M5 Spectrophotometer (Molecular
Devices, Sunnyvale, CA). Reaction velocity was determined for
each reaction well from the slope of a plot of relative fluorescence
units versus time. Each inhibitor peptide was tested at least at four
concentrations, 12.5, 25, 50, and 100 µM in triplicate.

Table 1. Peptides tested in fluorescent-based kinase activity assay

Peptide

Percentage of
KALNRQLGVAA

reaction velocity

Alanine substitution

KALARQLGVAA −61 ± 2

D-amino acid substitution

KALdNRQLGVAA −5 ± 10

Other modifications

KKKALNRQLGVAA −9 ± 8

WLRRIKAWLRRIKALNRQLGVAA −132 ± 10

CPP Domain

WLRRIKA (non-functional) +306 ± 21

WLRRIKAWLRRIKA −83 ± 4

YGRKKRRQRRR +44 ± 17

YARAAARQARA +149 ± 13

Concentration of 100 µM was used for all peptides. Percentages
represent the percentage change in MK2 reaction velocity versus the
unsubstituted peptide, KALNRQLGVAA, at a concentration of 100 µM.
At this concentration, KALNRQLGVAA inhibited 73% of MK2 activity.
Error is reported as the SD between three samples.

Radiometric IC50 and Kinase Activity Determination

A commercial radiometric assay service was used to test the
specificity and potency of complete peptides (CPP and thera-
peutic domain coupled). In these assays, a positively charged
substrate is phosphorylated with a radiolabeled phosphate group
from an ATP if the kinase is not inhibited by an inhibitor pep-
tide. The positively charged substrate is attracted to a negatively
charged filter membrane, quantified with a scintillation counter,
and compared to a 100% activity control. ATP concentrations
within 15 µM of the apparent Km for ATP were chosen because
an ATP concentration near the Km allowed for the kinases to have
the same relative phosphorylation activity and because Hayess
and Benndorf showed that the mechanism of the original in-
hibitor peptide was not to compete with the ATP binding site [37].
Individual conditions for each assay (reference inhibitors, buffer
conditions, ATP concentration, substrate, etc.) and information
about each kinase tested can be found on Millipore’s website
at http://www.millipore.com/drugdiscovery/dd3/kpservices. IC50

values for inhibitor peptides were determined using Millipore’s
IC50 Profiler Express service. The IC50 value was estimated from a 10-
point curve of one-half log dilutions. For peptides that were tested
for specificity, the concentration that inhibited approximately 95%
of MK2 activity was chosen to profile against a battery of kinases re-
lated to MK2, cell viability, or human disease from Millipore’s Kinase
Profiler service. In both assays, compounds were supplied in DMSO.
Every kinase activity measurement was conducted in duplicate.

Mesothelial Cell Culture

Immortalized human pleural mesothelial cells (ATCC CRL-9444)
were grown in Medium199 with Earle’s BSS and 0.75 mM
L-glutamine (Mediatech Inc., Manassas, VA), 1.25 g/l sodium
bicarbonate (Sigma), 3.3 nM epidermal growth factor (EGF)
(MBL International, Woburn, MA), 40 nM hydrocortisone (Sigma),
870 nM insulin (MBL International), 20 mM HEPES (Sigma), trace
elements mixture B (Mediatech Inc., Waltham, MA), 10% fetal
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bovine serum (FBS) (Hyclone), and 1% penicillin/streptomycin
(Mediatech Inc., Waltham, MA). Passage number four mesothelial
cells were used in live–dead assays.

Live–Dead Assay

Live–dead assays based on Molecular Probe’s LIVE/DEAD Via-
bility/Cytotoxicity Kit for mammalian cells were used to assess
the toxicity of various MK2 inhibitor peptides on human pleu-
ral mesothelial cells. Mesothelial cells were seeded in a Corning
CellBind, black well, clear-bottom, 96-well plate. Upon reaching
90–100% cell confluence, 200 µl of the appropriate media with
treatment was added to each well. Cells were incubated at 37 ◦C
and 5% CO2 for 24 h. One-half hour prior to the 24-h time point,
70% methanol was added to untreated cells to kill and permeabi-
lize the cells. These cells were used for determining the background
of Calcium-AM (CA) and the maximum dead signal for ethidium
homodimer-1 (EthD-1). Conversely, untreated live cells were used
to determine the background of EthD-1 and the maximum live sig-
nal for Calcein-AM. At the 24-h time interval, the cells were washed
two times with 200 µl of PBS. Then, 100 µl of the appropriate stain
stock was added to each well. Controls received the optimal con-
centration of either EthD-1 (8 µM) or CA (4 µM). All treated wells
received the same optimal concentrations of EthD-1 and CA in the
same stock. Samples were incubated for the appropriate optimal
time interval at 37 ◦C and 5% CO2. The optimal stain concentrations
and time intervals were determined via staining confluent cells
with variable concentrations of stain and measuring fluorescence
for each stain at variable time intervals. Thus, the optimal time for
dye incubation was chosen as the time that allowed for EthD-1
saturation and was still in the linear range of CA. All fluorescence
was measured with a Spectramax M5 Microplate Reader (Molecu-
lar Devices). CA required an excitation wavelength of 494 nm and
an emission wavelength of 517 nm. EthD-1 required an excitation
wavelength of 528 nm and an emission wavelength of 617 nm.

Results
Amino Acid Substitutions and Deletions

Using a fluorescence-based kinase assay, peptides with select
amino acid deletions and one alanine and D-amino acid substi-
tution were examined (Table 1). The modifications to the original
sequence described by Hayess and Benndorf were made for ease
and cost of peptide synthesis. Both the D-amino acid and alanine
substitutions showed that the asparagine was not critical for
MK2 inhibition. In fact, replacing the asparagine with an alanine
enhanced MK2 inhibition. Only moderate decreases in inhibition
were seen when two N-terminal lysines were removed. Thus, fur-
ther peptide studies were completed on peptides synthesized with
only one N-terminal lysine and with either the asparagine from
the original peptide or an alanine substituted for the asparagine.

Inhibition of MK2 – Synergy between the CPP and Therapeutic
Domains

The MK2 inhibitor peptide, KKKALNRQLGVAA, described by
Hayess and Benndorf [37], was used as a control. The IC50 of the
control peptide was compared to our novel cell permeant version
containing the WLRRIKAWLRRI CPP. The cell permeant version
dramatically enhanced MK2 inhibition when coupled with the
therapeutic domain (Table 1). Since this CPP was not designed to
inhibit MK2, we hypothesized that the CPP itself might serve as a
general kinase inhibitor.

Table 2. Effect of CPP on IC50 of MK2 inhibitor peptides

Peptide IC50 (µM)

WLRRIKAWLRRIKALNRQLGVAA 0.74

FAKLAARLYRKALARQLGVAA 1.8

KAFAKLAARLYRKALARQLGVAA 4.4

YARAAARQARAKALARQLGVAA 22

YARAAARQARAKALNRQLGVAA 5.8

Concentration of peptide selected yielded between 2-8% MK2 activity.

Table 3. Effect of CPP on inhibitor peptide specificity for MK2

Peptide

Concentration
tested
(µM)

Percentage of 43
kinases tested with

less than
20% activity

WLRRIKAWLRRIKALNRQLGVAA 30 47

FAKLAARLYRKALARQLGVAA 100 37

KAFAKLAARLYRKALARQLGVAA 100 28

Concentration of peptide selected yielded between 2-8% MK2 activity.

CPPs Alone Can Inhibit MK2

To determine whether CPPs alone would inhibit MK2, we tested
the ability of three CPPs to inhibit MK2 (Table 1 and Supporting
Information Figure S1). Of the three functional CPPs tested,
YARAAARQARA [41] showed the least MK2 inhibition, and unlike
the other CPPs tested, the level of MK2 inhibition did not
vary over the concentration range investigated. One of the
most widely known and used CPPs, YGRKKRRQRRR, inhibited
61.2% of MK2 activity at a concentration of 100 µM. Even at a
concentration of 25 µM, this CPP inhibited 47.7% of MK2 activity.
While minimal MK2 inhibition occurred with YARAAARQARA,
the CPP WLRRIKAWLRRIKA potently inhibited MK2. In fact,
WLRRIKAWLRRIKA was a much more potent inhibitor of MK2
activity than any therapeutic domain sequence. Interestingly,
WLRRIKA, a truncated version of the CPP WLRRIKAWLRRI, was a
very poor inhibitor of MK2. Overall, the functional CPPs tested had
varying ability to inhibit MK2.

CPP Choice Affects Potency

In five complete peptide inhibitors of MK2, CPP choice dramatically
affected potency (Table 2). The IC50 of the original peptide
developed by Hayess and Benndorf was 31 µM (IC50 curve not
shown). Thus, all CPPs displayed synergistic efficacy with their
respective therapeutic domains. However, the WLRRIKAWLRRI
CPP had an IC50 value more than one order of magnitude lower
than the peptide with the same therapeutic domain coupled to
the YARAAARQARA CPP.

CPP Choice and Substitution of Asparagine for Alanine Affect
Specificity

The three most potent inhibitors of MK2 (Table 2) were tested
against 43 diverse human kinases related to MK2, cell viability,
or human disease at a single concentration that yielded 2-8%
of normal MK2 activity (Table 3 and Supporting Information
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Table 4. Effect of five complete inhibitor peptide variants on ten human kinases

Peptide
sequence

WLRRIKAWLRRIK-
ALN-RQLGVAA

YARAAARQARA-
KALNRQLGVAA

FAKLAARLYRKA-
LARQLGVAA

KAFAKLAARLYR-
KALARQLGVAA

YARAAARQARA-
KALARQLGVAA

Concentration of peptide
inhibitor (µM) 30 300 100 100 300

Human kinase Percentage kinase activity

MK2 2 ± 1 10 ± 3 5 ± 2 8 ± 1 0 ± 0

MK3 16 ± 2 19 ± 3 10 ± 1 17 ± 1 5 ± 1

CaMKI 9 ± 1 8 ± 1 0 ± 2 0 ± 2 2 ± 0

MK5 67 ± 9 81 ± 3 131 ± 4 148 ± 4 86 ± 2

SAPK2a (p38α) 61 ± 7 100 ± 6 30 ± 6 59 ± 8 66 ± 3

IRAK4 12 ± 1 68 ± 3 13 ± 4 16 ± 2 23 ± 2

MLCK 4 ± 1 66 ± 9 1 ± 1 2 ± 0 9 ± 0

PKBβ 18 ± 2 96 ± 1 16 ± 5 28 ± 4 17 ± 2

PKCδ 11 ± 0 105 ± 2 40 ± 2 24 ± 3 101 ± 3

ROCK-I 0 ± 1 95 ± 7 25 ± 2 29 ± 0 27 ± 4

Concentrations selected were intended to yield between 0–10% MK2 activity. Error is reported as the SD between two samples.

Table S1). Even at over three times the concentration, peptides
with the FAKLAARLYR and KAFAKLAARLYR CPPs were more specific
than the peptide with the WLRRIKAWLRRI CPP.

To further explore this specificity phenomenon, five complete
inhibitor peptides were tested against 10 human kinases (Table 4).
Based on the results of the radiometric and fluorometric assays,
the YARAAARQARA CPP was a poor inhibitor of MK2 and, thus, may
generally be a poor kinase inhibitor. Also, while the substitution
of an alanine for an asparagine had only a modest effect on MK2
inhibition, we wanted to evaluate the effect of this substitution on
specificity. The kinases chosen for this testing were selected for the
following reasons. Three of the selected kinases are structurally
similar to MK2 and, therefore, may also be inhibited by the MK2
inhibitor peptides; thus, data with different CPPs would indicate
whether the CPP affected relative activity and specificity within
kinase families. MAPKAP-K3 (MK3) shares 75% of MK2’s amino
acid identity, and MK2 and MK3 phosphorylate many of the
same substrates with similar kinetics [23]. MK2 and MK3 share
35–40% identity with CaMKI [46,47]. MK5 shares 40% amino acid
identity with MK2 and MK3 [16]. SAPK2a (equivalent to p38α

MAP kinase) was selected to determine if the peptide inhibited
the upstream kinase that phosphorylates MK2 in vivo [48–51].
MLCK is a substrate of MK2 in vitro that was inhibited strongly
in our previous kinase screening [52]. Thus, we were able to
investigate the effects of the CPPs within a kinase signaling
cascade. Finally, IRAK4, PKBβ , PKCδ, and ROCK-I were selected
because they represent a diverse array of kinases and because the
three peptides listed in Table 3 and tested previously dramatically
inhibited their kinase activity.

The results of this study demonstrated dramatic differences
among the specificity of the five tested kinase inhibitor variants
(Table 4). The concentrations selected for the assay yielded
between 0–10% MK2 activity according to IC50 data (Table 2).
The peptides in the first two peptide columns in Table 4 show
a direct comparison of the inhibitors with the WLRRIKAWLRRI
and YARAAARQARA CPPs and the arginine containing inhibitor
peptide domain. For 8 of the 10 kinases, MK3 and CaMKI as the
exceptions, the YARAAARQARA CPP containing inhibitor peptide
showed significantly reduced nonspecific inhibition. Even with the
more specific YARAAARQARA CPP, inhibition of MK3 and CaMKI is

not surprising since these kinases are part of the same kinase family
and have significant sequence homology as described above.
The next three peptides in Table 4 provide a direct comparison
of YARAAARQARA, FAKLAARLYR, and KAFAKLAARLYR CPPs with
the inhibitor domain containing the asparagine to alanine
substitution. Even with the asparagine to alanine substitution, the
YARAAARQARA containing inhibitor shows increased specificity as
the other two peptides antagonize MK5 activity and suppress PKCδ

activity while YARAAARQARA containing peptides do not. Finally,
comparison of the two YARAAARQARA containing peptides shows
that while the asparagine to alanine amino acid substitution does
not affect MK2 inhibition, it dramatically affects specificity. While
this substitution affects specificity, the YARAAARQARA containing
peptide even with the alanine substitution is significantly more
specific than the WLRRIKAWLRRI-peptide containing the original
asparagines residue. All peptides inhibited MK2 and MK3; however,
in each case, the inhibition of MK2 was greater than that
of MK3. Also, inhibition of CaMKI was equal to or greater
than MK2 inhibition. None of the inhibitors except perhaps
FAKLAARLYRKALARQLGVAA was a good inhibitor of SAPK2a
(p38α).

In this study, CPPs that provided more specificity were used at
higher concentrations to achieve the same level of inhibition
of MK2. Even at three to ten times the concentrations of
the other peptides, the peptides with the YARAAARQARA CPP
inhibited IRAK4, MLCK, and PKCδ to a lesser degree. Also,
although WLRRIKAWLRRIKALNRQLGVAA was used at the lowest
concentration, this peptide had the least specificity.

Peptide Specificity Correlates with Peptide Toxicity

Table 5 shows that less specific peptides were much more lethal.
The peptide with the WLRRIKAWLRRI CPP killed nearly every cell
within 24 h at a concentration of only 40 µM. However, the CPP that
caused the complete peptide to be most specific, YARAAARQARA,
could be used at concentrations in excess of the highest peptide
concentration tested, 3mM, without resultant cell death.
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Table 5. Effect of complete inhibitor peptide on mesothelial cell
viability

Peptide
Maximum non-lethal
concentration (µM)a

WLRRIKAWLRRIKALNRQLGVAA <40b

KAFAKLAARLYRKALARQLGVAA 230

FAKLAARLYRKALARQLGVAA 300

YARAAARQARAKALARQLGVAA >3000

a Highest concentration of peptide that resulted in live–dead equal to
that of untreated cells.
b Only about 4% of cells live at this concentration.

Discussion

Clearly, these kinase assays have limitations that preclude a direct
correlation of the results with in vivo activity. The kinase profiling
was performed on individual kinases at one concentration while
cells contain a plethora of kinases with which the inhibitor may
interact. Furthermore, kinase expression varies widely within
and between cells. The described studies did not examine
whether inhibition of MK2 would be preferred over inhibition
of other kinases, thus, potentially affecting specificity. While these
studies provided a great deal of useful information about kinase
and peptide inhibitor interactions, more studies in competitive
in vitro environments and in vivo will be needed to establish the
therapeutic value of these peptide-based kinase inhibitors.

While this study focused primarily on the effects of the CPP on
the specificity of potency of kinase-inhibitor peptides, even single
amino acid substitutions within the kinase inhibition domain of
the peptide can significantly impact specificity. Both fluorescence-
based and radiometric assays demonstrated that an asparagine
to alanine substitution in the therapeutic domain had minimal
impact on inhibitor potency for MK2 (the minor activity differences
seen between fluormetric and radiometric assay results can
be explained by slight differences in assay conditions and ATP
concentrations). However, the radiometric assay showed that this
substitution decreased the specificity of the peptide. The drastic
change in specificity caused by this modification would be nearly
impossible to predict a priori.

The more surprising results came from examining CPPs used to
deliver the therapeutic domain. CPPs alone inhibited varying
amounts of MK2 activity. All assays also showed that the
conjugation of each tested CPP to the MK2 inhibition sequence
enhanced the efficacy of the therapeutic domain. Investigators
have reported this phenomenon with other CPPs [53]. At this
point, the mechanism of this enhanced efficacy is unclear. The
CPP may help block the ATP binding site, enhance the binding
of the therapeutic domain to the substrate binding site, bind
to regulatory allosteric sites, or simply change the conformation
of the kinase to reduce kinase activity. The crystal structure of
MK2 reveals that the C-terminal regulatory domain of MK2 has
high helical character, occupies the substrate binding pocket, and
may act as a pseudosubstrate [54]. While the CPPs in this paper
share little sequence homology with MK2’s C-terminal regulatory
domain, they probably do form helix configurations and may
enhance peptide binding to the substrate binding site of MK2
[41,54]. The CPPs themselves do not appear to act as substrate
mimics for MK2 since they share very little homology to known
substrates of MK2 [55].

Perhaps, more importantly, this is the first report to our
knowledge showing that CPP selection can dramatically affect
peptide specificity in addition to activity. Moreover, while these
peptides inhibited additional kinases within the MK2 family,
the peptides also inhibited kinases with diverse structures and
evolutionary origin. While these assays showed that no peptide
was completely specific for MK2, even small molecular inhibitors of
kinase activity approved by the United States FDA lack specificity
in similar kinase activity assays [56–59]. Complete specificity for
a target kinase may not even be desirable since inhibiting a
single kinase may not be sufficient to counter the actions of
compensatory pathways.

The data presented cannot explain why different CPPs lead to
varying specificity and IC50s, but both charge and hydrophobicity
likely contribute to this phenomenon. While the mechanism
of entry is believed to vary for different CPPs, most CPPs are
positively charged and have electrostatic interactions with the
phospholipids, gangliosides, glycosaminoglycans, and polysialic
acid attached to the plasma membrane [60–63]. In addition to
charge, hydrophobicity has been shown to be important for cell
penetration [64]. Thus, the identity of hydrophobic amino acid
within the primary sequence of the CPPs may also play a role in
therapeutic potency and specificity. Nonetheless, we have shown
not only that the sequence of the inhibitor domain affects kinase
specificity, but also that the choice of CPP coveys dramatically
different pharmacological activity to kinase inhibitor peptides.
Future studies will examine the role of charged and hydrophobic
residues within the primary structure of CPPs to further elucidate
the phenomenon that leads to change in therapeutic potency and
toxicity of the delivered therapeutic.

Of the peptides tested, less specific peptides were much more
lethal to pleural mesothelial cells. The reason that more specific
peptides could be used at higher concentrations is not clear.
One would expect peptides with higher specificity to inhibit
fewer kinases crucial to cell function inducing less toxicity. The
fact that knocking out MK2 is not lethal in mice indicates that
even extremely high concentrations of a specific inhibitor of MK2
should not be lethal and adds support to this theory [26,65]. In
contrast, investigators generally agree that different peptide CPPs
enter cells in variable ways [11,12,66]. Thus, the lethality of less
specific peptides may not be only a function of lack of inhibitor
specificity but also a function of the peptide’s ability to enter the
cell cytoplasm. Finally, both arginine and tyrosine contribute to
nonspecific protein-protein interactions, and this phenomenon
may also be playing a role in both specificity and toxicity of
the peptides. Regardless, CPP choice was largely responsible
for increased inhibitor peptide toxicity. Peptides with identical
therapeutic domains but different CPPs had vastly different toxicity
profiles.

We believe that these results have wider implications for
delivering cargos with CPPs. The CPPs themselves may inhibit
multiple kinases in the cell. One of the most widely known and
used CPPs, YGRKKRRQRRR, had a substantial impact on MK2
activity. Thus, the results of cell and animal studies using CPPs
have likely been somewhat confounded by the biological activity
of the CPP in cells. Furthermore, these studies show that CPP
selection can have a dramatic impact on therapeutic specificity
and can actually be used to enhance the efficacy of therapeutic
cargos. Additionally, less specific peptides that differed from more
specific peptides only in CPP identity were lethal to cells at lower
concentrations versus more specific peptides. As a result, future
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work will warrant careful consideration of the diverse properties of
CPPs as well as judicious selection of a CPP for specific applications.
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